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Abstract
We present a model based on continuum elasticity and energy minimization for
the study of ferroelastic domain walls close to a surface. We focus on walls
orthogonal to the surface, and predict a double-peak structure in the surface
values of the squared elastic strain, which is directly related to the chemical
reactivity. We also compute the height profile, which can be measured, in
principle, e.g. with atomic force microscopy, and the strain distribution in the
bulk. Our results are in good agreement with previous atomistic simulations,
which had required a much bigger computational effort. The effect of the
cubic anisotropy (C12 + 2C44)/C11 on the surface structure of the intersection
between the twin wall and the crystal surface is also explored.

1. Introduction

Domain walls offer a rare opportunity to dope two-dimensional sections in the bulk of cryst-
alline materials selectively. The enhanced chemical reactivity of the elastically strained region
around the domain wall has been demonstrated experimentally, and has been used to form two-
dimensional superconducting regions in an insulating matrix [1, 2]. The process of selective
doping is in large part controlled by the elastic strains present in the material, and by their
interaction with surface relaxation, which is still poorly understood.

Spontaneous formation of microstructure in bulk ferroelastic materials under cooling
below the transition temperature is well understood from a thermodynamic point of view [3].
Existing theories focus on average properties and do not provide a precise local description
of the microstructure, except for a few characteristics, such as the one-dimensional profile of
flat domain walls in the bulk, for which the long-standing theoretical predictions have recently
been confirmed experimentally by means of x-ray scattering [4, 5]. The resulting picture, at
least in oxide ferroelastics, is that of a smooth change of the order parameter from one value
to the other, over a distance of many unit cells, which is well described by continuum theories.
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Much less attention has been devoted to surface relaxation effects. It may be expected that
the ferroelastic order parameter is reduced close to a surface, suggesting local deformations
in the surface layer comparable to those found in the interior of the domain wall. Theoretical
models for the surface relaxation indicate the possibility of oscillations on the unit-cell scale
close to the surface [6, 7] in some parameter ranges.

The interaction of the wall structure with surface relaxation necessarily generates two-
dimensional patterns, which are relevant both for real-space probing of the material properties,
e.g. via atomic force microscopy [8], and for interacting with the material, e.g. via doping
[1, 2, 9]. Domain walls constitute a region of higher chemical reactivity inside the material,
and are natural candidates for selective doping.

The surface structure of domain walls was first studied theoretically by Novak and
Salje [10,11] who performed extensive numerical simulations of a two-dimensional atomistic
model, chosen to represent typical perovskite elastic properties. They predicted that the
resulting elastic strains generate a complex pattern, which includes a thinning of both the
domain wall and the surface relaxation around their intersection, and a double-peak structure
in the surface values of the square of the order parameter. However, the large computational
effort required by their atomistic computations prevented an analysis of the dependence of the
results on the material parameters, including the assessment of the robustness of such features
with respect to parameter changes. Further, their method is impractical for application to
specific materials, due to the extremely high number of atoms which are present in such two-
dimensional structures. In this letter we present a continuum, linearly elastic model which
captures the essential features of their results without requiring a large numerical effort for the
solution. We are thus able to study the material behaviour as a function of material parameters,
and observe that the double-peak structure observed by Novak and Salje is a signature of cubic
anisotropy, which was very strong in their model. In approximately isotropic materials however
we predict a different pattern, with much stronger effects on the surface height profiles, but
smoother order-parameter distributions. Except for the bulk elastic constants, which are at
least approximately known for most materials, our model has only two parameters, the wall
width and the strength of the surface relaxation. We expect this model to be applicable to
real-world problems, with experimentally determined material parameters.

2. Model

We consider a cubic material which undergoes a C44-shear instability. We restrict to two
variants separated by a single domain wall, and reduce to two spatial dimensions assuming
that the geometry is invariant under translations in the third one. Let the material occupy the
y � 0 half-plane, and the domain wall be located on x = 0. This fixes the phase distribution,
and allows us to replace the nonconvex elastic potential with a (phase-dependent) convex one,
which for simplicity we take to be quadratic. Since the ferroelastic transition corresponds to
a small shear deformation, we take all elastic constants to be those of the parent cubic phase,
except of course the unstable one, C44. This amounts to reducing the number of independent
constants to those of a cubic crystal, and leads to

Wb(∇u, x) = 1

2
C11(u

2
x,x + u2

y,y) + C12ux,xuy,y +
1

2
C44(ux,y + uy,x − 2α)2 (1)

where α(x) = |α| sgn(x) is the spontaneous shear. The C44-constant is very small around the
transition, and indeed it vanishes at second-order transition points [12]. Whereas in isotropic
materials C11 = C12 +2C44, the perovskites in which we are interested have a significant cubic
anisotropy, due to the strong metal–oxygen bonds. We shall consider the range 0 � C12 � C11,
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C44 � C11. For comparison, the linearization of the discrete Novak–Salje model [10, 11]
delivers C11 � 2800, C12 � C44 � 1.

The spontaneous strain is reduced at the surface. To model this effect, we use a different
elastic energy in the surface region with respect to the bulk. Whereas the reduced symmetry
along the surface would in principle allow for a variety of different terms, in practice, only C44

is relevant for the present purposes. We choose

Ws(∇u) = 1

2
γC44(ux,y + uy,x)

2. (2)

Here, γ represents the relative strength of the surface relaxation, and the minimum of Ws has
been set at zero shear for simplicity. More general (but still quadratic) expressions for Ws

can be included in the present formalism without any change; however, the little available
knowledge of the material parameters entering such energies limits the usefulness of more
complex expressions.

Finally, the microscopic length scale ε, which represents the wall thickness (and, as we
shall see, the surface relaxation length as well), enters the energy through the simplest second-
order singular perturbation, the squared norm of the second gradient ε2|∇2u|2. The full energy
is then

E[u] =
∫

{y>0}
Wb(∇u) +

1

2
C44ε

2|∇2u|2 dx dy +
∫

{y=0}
εWs(∇u) dx (3)

where the coefficient ε in front of the surface term arises because Ws is active only in a small
strip around the surface, whose width is of the order of the microscopic length scale ε. (This
makes γ an adimensional parameter.) The coefficient C44/2 in front of the ε2-term has been
chosen for convenience, so that ε has the dimensions of length and coincides with the decay
length of domain walls. (See below.)

The symmetry of the problem under reflections with respect to the domain wall {x = 0}
allows us to restrict attention to the first quadrant. Continuity of ∇u and symmetry give then
the boundary conditions

ux = uy,x = 0 for x = 0. (4)

From now on, equations will be specialized to the first quadrant, and α = |α| will always take
the positive value. (Results for the second quadrant are obtained by changing a few signs.) In
the numerical results we shall use ε as the unit of length, α as the unit of deformation and C44

as the unit of energy. (In the present linear approach deformations can be scaled independently
of lengths.)

In the rest of this letter we analyse the shape of the minimizers of (3) for various values
of the parameters, in the given geometry. We start with the surface relaxation. In the bulk
of the system the minimizer is ub(x, y) = (0, 2αx). Approaching the surface {y = 0},
we seek a solution such that the perturbation is invariant under translations in x, i.e., of
the form us(x, y) = ub(x) + w(y). By minimizing E[us] with respect to w(y), we get
w(y) = 2αεγ (γ + 1)−1e−y/ε . This gives

us(x, y) = 2α

(
ε[γ /(γ + 1)]e−y/ε

x

)
(5)

which does not depend on the elastic constants C11 and C12. The value of the order parameter
on the surface

us
x,y + us

y,x

2

∣∣∣∣
y=0

= α

γ + 1
(6)

turns out to be reduced by a factor γ + 1 with respect to the bulk value α, providing a physical
interpretation for the parameter γ .
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We now turn to the domain wall. Away from the surface, its structure is invariant under
translations in y; hence we seek uw(x, y) = uw(x) which obeys (4) at x = 0 and approaches
ub at large x. We obtain

uw(x) =
(

0
2α(x + εe−x/ε)

)
. (7)

(The parameter ε is, hence, physically equivalent to the ‘wall thickness’ parameter w in
Landau–Ginzburg theory [3].) For x = 0 the order parameter is obviously 0. The second
derivative uy,xx is discontinuous at x = 0. This is due to the linearization of Wb around the
two minima, and would be absent for a smooth, nonconvex Wb.

From a qualitative point of view, the strain field at the intersection of surface and inter-
face is generated because the boundary condition given in equation (4), ux(0, y) = 0, is
incompatible with the surface relaxation us computed in equation (5). This incompatibility
has to be accommodated by elastic deformation. We can get a rough idea of the resulting
strain patterns, in the relevant C11 	 C44 case, by assuming uniform relaxation of the strain
in a region of size (0, ξ) × (0, ε). From equation (5), the mismatch ux(0, y) is of order
g = αεγ /(γ + 1). Hence, ux,x � g/ξ and δux,y � g. The strain energy is then

C11 δu2
x,x ξ + C44α

2ξε � ε2α2(C11/ξ + C44ξ)

giving ξ ∼ (C11/C44)
1/2. (The second-gradient term is of lower order, since ξ 	 ε.) This

computation assumes that no additional strains are developed in the y-direction, which is
correct if C12 � C11. If C12 � C11 instead, it is convenient to rewrite Wb as

Wb(∇u, x) = 1

2
C11(ux,x + uy,y)

2 − (C11 − C12)ux,xuy,y +
1

2
C44(ux,y + uy,x − 2α)2 (8)

which emphasizes the softening of the uy,y = −ux,x mode. In this case the deformation can be
accommodated by volume-preserving transformations which couple only to the small energy
coefficients C44 and C11 − C12. The length scale is then ξ � ε.

3. Numerical solution

In order to solve our model numerically, we first obtain an analytic approximate solution u0

which satisfies the boundary conditions (equation (4)), and the asymptotic behaviours at large
x (equation (5)) and at large y (equation (7)), then expand the difference in a set of localized
basis functions:

u(x, y) = u0(x, y) +
∑

n

cnu
(n)(x, y). (9)

The approximate solution that we chose, which is obtained combining (5) and (7), is

u0(x, y) = 2α

(
ε[γ /(γ + 1)]e−y/ε(1 − e−x/ε)

x + εe−x/ε

)
. (10)

The localized basis is composed by polynomials and exponentials:

u(n)(x, y) = e(n)xanybn exp

{
− x

λn

− y

µn

}
. (11)

Here, e(n) is the polarization vector, i.e., a unit vector in the x̂- or ŷ-direction, an and bn are non-
negative integers, λn and µn positive constants. The values of e(n), an, bn, λn and µn are fixed
a priori, with λn and µn chosen to reproduce the length scales which we expect to be present
in the solution. The qualitative analysis above suggests that it is useful to include some λn of
order ε

√
(C11/C44) and some of order ε. The boundary condition (4) is implemented avoiding
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all functions with an = 0, and replacing the factor x with (x + λn) in those with an = 1,
e(n) = ŷ. All integrals appearing in the energy (3) can be reduced to sums of monomials
times decaying exponentials, and hence can be computed analytically. The resulting quadratic
problem in the coefficients cn can be then solved numerically using standard linear-algebra
packages. We used both LU decomposition and singular-value decomposition from [13], with
no appreciable difference. Increasing the number of basis functions gives a systematic way
to improve the results and to control convergence. In practice, we used a basis of around
300 vectors.

Figure 1 displays a contour plot of the absolute value of the order parameter exy =
(ux,y + uy,x)/2 for C11 = 100C44, C12 = 0 and γ = 2. This choice of γ corresponds to a
reduction by a factor of 3 of the order parameter on the surface, which is the same as was used in
the atomistic simulations by Novak and Salje. The choice C12 = 0 corresponds to a very strong
cubic anisotropy; this however does not strongly influence the results—see below. Finally, the
large value of C11/C44 corresponds to the softness of the active mode close to the transition
temperature, and is the main large parameter that determines the aspect of the solution.

Figure 1 shows that both the wall width and the surface relaxation depth are reduced near
their intersection. The same feature can be seen by plotting the squared order parameter on
the surface, which is directly related to the chemical reactivity of the material. Figure 2 shows

-10 -5 0 5 10
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Figure 1. A contour plot of the absolute
value of the order parameter |exy | for C11 =
100C44, C12 = 0 and γ = 2. All curves
come closer to the x-axis around x ∼ 3; the
two higher ones (the most internal ones) also
approach the y-axis.

Figure 2. The squared order parameter e2
xy

as a function of x at y = 0 for C12 = 0,
γ = 2 and C11/C44 = 1000, 400, 100 and
10 (from top to bottom curve).
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e2
xy(x, 0) for various values of C11. It is evident that the double-peak structure, corresponding

to the reduction of the surface relaxation displayed in figure 1, is more prominent for large
C11/C44. The role of C12 is analysed in figure 3, for fixed C11/C44. Whereas the double-peak
is almost absent in the case C11 = C12, it is clearly present already with a 20% reduction
in C12 with respect to C11, and its height does not sensibly depend on C12 in the regime
0 � C12/C11 � 1/2. The disappearance of the peak for C12 � C11 corresponds to the
softening of the shear mode ux,x − uy,y (see equation (8)).

The role of γ is investigated in figure 4. Since the order parameter on the surface scales
as (γ + 1)−1, we plot the normalized value e2

xy(γ + 1)2. The relative importance of the peak
increases with increasing γ . This effect is however rather small in absolute value, since for
example at γ = 10 even at the peak exy(x, 0) reaches only about 10% of its bulk value.

Figure 3. The squared order parameter e2
xy as

a function of x at y = 0 for C11/C44 = 100
and C12/C11 = 0, 0.5, 0.8 and 1 (from top to
bottom curve).

Figure 4. The squared rescaled order
parameter e2

xy(x, 0)/e2
xy(∞, 0) as a function

of x for C11/C44 = 100 and C12/C11 = 0.5,
for γ = 10, 4, 2 and 1 (from top to bottom
curve).
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Figure 5. Top panel: surface topography uy(x, 0) for C11 = 100C44, γ = 2 and C12/C11 = 1,
0.8, 0 (from top to bottom; the two lower curves are barely distinguishable), compared with the
unrelaxed wall profile uy(x, ∞) (dashed curve). Bottom panel: surface topography referred to the
bulk wall profiles, uy(x, 0) − uy(x, ∞), for C12/C11 = 1, 0.99, 0.95, 0.9, 0.8 and 0 (from top to
bottom curve at x = 0).

Figure 5 displays the resulting surface topography, as an absolute value and as a difference
from the bulk value u(x, ∞), which corresponds to the result without surface relaxation,
i.e. with γ = 0. In all the cases considered the part of the domain wall close to the surface is
contracted in the y-direction, leading to an additional smoothing of the corner. Qualitatively,
this can be attributed to the tensile stresses present on the surface, as discussed at the end of
section 2. As a consequence, we see that measuring the height of the surface as an estimate of
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the wall profile will underestimate the curvature in the central region. This effect is particularly
pronounced in the case C11 = C12, where the presence of an additional soft mode leads to
a much larger relaxation. Indeed, in the latter case the dilative ux,x strain due to the surface
relaxation is relaxed via the shear ux,x − uy,y channel, resulting in stronger compression
along uy,y .

Useful discussions with Gero Friesecke, Stefan Müller, Jurica Novak and Florian Theil are
gratefully acknowledged. This work was partially supported by the EU TMR network ‘Phase
Transitions in Crystalline Solids’, contract FMRX-CT98-0229.
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